**Gender and survival in patients with heart failure: interactions with diabetes and aetiology. Results from the MAGGIC individual patient meta-analysis†**

Manuel Martínez-Sellés1*, Robert N. Doughty2, Katrina Poppe2, Gillian A. Whalley3, Nikki Earle2, Christophe Tribouilloy4, John J.V. McMurray5, Karl Swedberg6, Lars Køber7, Colin Berry5, and Iain Squire8, on behalf of the Meta-Analysis Global Group In Chronic Heart Failure (MAGGIC)

1Cardiology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 16, 28007 and Universidad Europea de Madrid, Spain; 2The University of Auckland, Department of Medicine, Auckland, New Zealand; 3Unitec, Auckland, New Zealand; 4INSERM, ERI 12, Amiens, France and University Hospital Amiens, France; 5University of Glasgow, BHF Glasgow Cardiovascular Research Centre, Glasgow, UK; 6Sahlgrenska Academy, University of Gothenburg, Department of Emergency and Cardiovascular Medicine, Gothenburg, Sweden; 7Rigshospitalet–Copenhagen University Hospital, Copenhagen, Denmark; and 8University of Leicester and NIHR Biomedical Research Unit, Glenfield Hospital, Leicester, UK

Received 4 November 2011; revision requested 30 January 2012; accepted 3 February 2012

**Aim**

The aim of this study was to investigate the relationship between gender and survival of patients with heart failure, using data from both randomized trials and observational studies, and the relative contribution of age, left ventricular systolic function, aetiology, and diabetes to differences in prognosis in men and women.

**Methods and results**

Data from 31 studies (41 949 patients; 28 052 men, 13 897 women) from the Meta-Analysis Global Group In Chronic Heart Failure (MAGGIC) individual patient meta-analysis were used. We performed survival analysis to assess the association of gender with mortality, adjusting for predictors of mortality, including age, reduced or preserved ejection fraction (EF), and ischaemic or non-ischaemic aetiology. Women were older [70.5 (standard deviation 12.1) vs. 65.6 (standard deviation 11.6) years], more likely to have a history of hypertension (49.9% vs. 40.0%), and less likely to have a history of ischaemic heart disease (46.3% vs. 58.7%) and reduced EF (62.6% vs. 81.6%) compared with men. During 3 years follow-up, 3521 (25%) women and 7232 (26%) men died. After adjustment, male gender was an independent predictor of mortality, and the better prognosis associated with female gender was more marked in patients with heart failure of non-ischaemic, compared with ischaemic, aetiology (P-value for interaction = 0.03) and in patients without, compared with those with, diabetes (P-value for interaction < 0.0001).

**Conclusion**

This large, individual patient data meta-analysis has demonstrated that survival is better for women with heart failure compared with men, irrespective of EF. This survival benefit is slightly more marked in non-ischaemic heart failure but is attenuated by concomitant diabetes.

**Keywords**

Heart failure • Prognosis • Sex • Ejection fraction • Diabetes • Aetiology

---

**Introduction**

While the populations of patients with heart failure (HF) studied in clinical trials are dominated by men, in routine clinical practice half or more of all patients with HF are women.1,2 Whether prognosis differs for men and women with HF is controversial. Many studies have associated female sex with better survival,1–14 although several failed to identify such an association15–18 and one study

---

1†A list of the participating investigators is provided in the Appendix.

* Corresponding author. Tel./Fax: +34 915868276, Email: mmselles@secardiologia.es

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2012. For permissions please email: journals.permissions@oup.com.
has reported worse prognosis for women. Moreover, in HF populations, sex is strongly associated with a number of clinical variables that influence prognosis such as age, aetiology, and in particular left ventricular ejection fraction (EF), associations which may confound the independent effect of sex on survival. Assessment of the relationship between sex and prognosis is further complicated by the relatively small numbers of women in randomized, controlled trials involving patients with HF, in large part due to the exclusion from these trials of older patients and patients with HF with preserved EF, both of which are more prevalent among women with HF.

The potential reasons for differences in survival for men and women with HF are uncertain. Differences in survival between men and women with HF fail to show a consistent relationship to either aetiology (ischaemic or non-ischaemic) or to whether patients had reduced or preserved EF. The greater prevalence of diabetes and the relative under-use of evidence-based therapies among women compared with men may theoretically contribute to worse prognosis for women. However, HF with preserved EF is more common among women than men, and this may be expected to lead to better survival for these patients.

The main results from the Meta-Analysis Global Group In Chronic Heart Failure (MAGGIC) meta-analysis demonstrated that HF patients with preserved EF have a lower risk of death than patients with reduced EF, regardless of age, sex, and aetiology of HF. The main analysis also showed that male sex was an independent predictor of mortality [hazard ratio (HR) 1.23, 95% confidence interval (CI) 1.18–1.28]. The aim of the current analysis was to assess comprehensively the relationship between sex and survival in patients with HF, using a large individual patient data set. Our hypothesis was that age, left ventricular EF, aetiology, and diabetes would have a different impact on survival for men and women with HF.

Methods

The methods and main results from the MAGGIC meta-analysis have already been described. In brief, we searched online databases using the key words: incidence, prognosis, outcome, mortality, clinical trials, HF, ventricle, EF, systolic, and diastolic. We also searched reference lists of articles obtained during the online search, as well as conference abstracts, and utilized personal communication. Eligible studies were those that included patients with HF and reported outcome (death from any cause). Studies that applied a left ventricular EF entry criterion were excluded. The meta-analysis was approved by The University of Auckland Human Subjects Ethics Committee.

Fifty-six potentially suitable studies were identified, and individual patient data were provided from 31 studies on a pre-defined set of variables including demographics, medical history, medical treatment, symptomatic status, clinical variables, laboratory variables, and outcome. Data from the individual studies were re-coded into a uniform format at the Central Co-ordinating Centre at the University of Auckland and incorporated into one database. The data from the Candesartan in Heart Failure Assessment of Reduction in Mortality and morbidity (CHARM) trial were made available for this meta-analysis, but the data set from this study was added at the University of Auckland Human Subjects Ethics Committee.

Survival

During 3 years follow-up, 3521 (25.3%) women and 7232 (25.7%) men died. There were 137 [95% confidence interval (CI) 133–140] deaths per 1000 patient-years in men and 135 (95% CI
131–139) deaths per 1000 patient-years in women. On analysis only adjusted for age, men were at higher risk of death than women [hazard ratio (HR) 1.31, 95% CI 1.25–1.36] (Figure 1). As previously reported, on multivariable analysis, male sex showed an independent association with the risk of death at 3 years (HR 1.23, 95% CI 1.18–1.28). When the randomized controlled trials of pharmacotherapy (three trials, 20 878 patients) were excluded from the analysis, the risk of death remained higher among men (fully adjusted HR 1.27, 95% CI 1.19–1.36).

Neither age \( (P = 0.63) \) nor history of hypertension \( (P = 0.10) \) altered the differential relationship between sex and outcome. However, both diabetes \( (P < 0.001) \) and aetiology of HF \( (P = 0.03) \) did appear to modify this relationship.

### Table 1 Baseline characteristics of 41 949 patients included in 31 studies by gender

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (31 studies)</td>
<td>28 052</td>
<td>13 897</td>
<td></td>
</tr>
<tr>
<td>Age, years (SD)</td>
<td>65.6 (11.6)</td>
<td>70.5 (12.1)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>40.0</td>
<td>49.9</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>51.0</td>
<td>33.3</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>19.7</td>
<td>21.6</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>22.8</td>
<td>25.4</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Ischaemic aetiology</td>
<td>58.7</td>
<td>46.3</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Medication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE inhibitor or ARB</td>
<td>80.3</td>
<td>71.1</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Beta-blocker</td>
<td>38.5</td>
<td>34.7</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Diuretic</td>
<td>80.2</td>
<td>83.6</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>22.5</td>
<td>20.9</td>
<td>0.004</td>
</tr>
<tr>
<td>Digoxin</td>
<td>44.2</td>
<td>41.2</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Clinical status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional class (I/II/III/IV)</td>
<td>11.1/147.4/34.7/6.8</td>
<td>9.1/45.2/36.7/9.0</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Heart rate, b.p.m.</td>
<td>78.0 (17.5)</td>
<td>81.4 (19.6)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>128.6 (21.7)</td>
<td>135.0 (24.5)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td>76.9 (12.2)</td>
<td>77.0 (13.2)</td>
<td>0.3245</td>
</tr>
<tr>
<td>Left ventricular EF, %</td>
<td>33.0 (24.5–44.0)</td>
<td>42.0 (30.0–57.0)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Preserved EF, %</td>
<td>18.4</td>
<td>37.4</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; DBP, diastolic blood pressure; EF, ejection fraction; SBP, systolic blood pressure; SD, standard deviation.

**Figure 1** All-cause mortality for men and women adjusted for age \((P < 0.001)\).

**Figure 2** All-cause mortality for men and women with heart failure and preserved ejection fraction (HF-PEF) or reduced ejection fraction (HF-REF) adjusted for age (EF group × gender interaction \(P = 0.72\)).

Age, left ventricular ejection fraction, and hypertension

The excess mortality risk associated with male sex was of similar magnitude in patients with reduced or preserved EF (Figure 2). Neither age \( (P = 0.63) \) nor history of hypertension \( (P = 0.10) \) altered the differential relationship between sex and outcome. However, both diabetes \( (P < 0.001) \) and aetiology of HF \( (P = 0.03) \) did appear to modify this relationship.
Diabetes

Diabetes was present more frequently in women (25.4%) than in men (22.8%, \( P < 0.001 \)). In patients with reduced EF, diabetes was present among 26.6% of women and 23.1% of men (\( P < 0.001 \)), and in patients with preserved EF, among 23.6% of women and 21.7% of men (\( P = 0.03 \)). There were 2997 deaths among 9776 patients (30.7%) with, and 7366 deaths among 31513 patients (23.4%) without, diabetes. After adjustment for covariates, diabetes retained an independent association with death from any cause (adjusted HR 1.41, 95% CI 1.35–1.47) and with cardiovascular death (HR 1.51, 95% CI 1.41–1.62).

Concomitant diabetes attenuated the lower risk of death associated with female sex (risk of death for men vs. women: diabetes HR 1.11, 95% CI 1.03–1.20; no diabetes 1.37, 95% CI 1.30–1.45, \( P \)-value for interaction \(<0.0001\)). Diabetes also appeared to modify the relationship between sex and mortality, irrespective of left ventricular EF. Among patients with diabetes, there was no statistically significant difference in the HR for death from any cause between men and women in either the preserved or reduced EF groups. However, for patients without diabetes, men had a higher risk of death from any cause compared with women, in both the preserved and reduced EF groups. The adjusted HR for different subgroups, with women with preserved EF and no diabetes as the comparator, is shown in Figure 3A. The three-way interaction for gender \( \times \) EF \( \times \) diabetes was not statistically significant (\( P = 0.208 \)).

Aetiology

Ischaemic aetiology was less frequent among women (46.3%) than men (58.7%, \( P < 0.001 \)). Ischaemic aetiology was recorded in 61.4% of men and 50.9% of women (\( P < 0.001 \)) with reduced EF, and in 46.9% of men and 38.6% of women (\( P < 0.001 \)) with preserved EF. Ischaemic aetiology showed an independent
association with death from any cause (adjusted HR 1.07, 95% CI 1.03–1.12), and cardiovascular death (HR 1.11, 95% CI 1.04–1.19).

The aetiology of HF appeared to modify the association between sex and outcome: risk of death for men vs. women with ischaemic HF, adjusted HR 1.17 (95% CI 1.10–1.24); non-ischaemic aetiology HR 1.28 (95% CI 1.21–1.37), P-value for interaction = 0.03. Although there was a trend to worse prognosis in men with ischaemic aetiology, this did not reach statistical significance in either the preserved or reduced EF groups. For patients with non-ischaemic aetiology, men had a higher risk of death from any cause compared with women, in both the preserved and reduced EF groups. The adjusted HR for the different subgroups compared with women with preserved EF and no ischaemic HF is shown in Figure 3B (three-way gender × EF × ischaemic aetiology interaction P = 0.0008).

Discussion

This large-scale meta-analysis, based upon patient-level data from almost 42,000 individuals, represents the largest assessment of the association between sex and survival for patients with HF. The main finding of our study is that compared with men, women with HF have lower all-cause mortality over 3 years, irrespective of EF. Our analysis confirms that women with HF are on average older, are more likely to have a history of hypertension and diabetes, but are less likely to have HF of ischaemic aetiology. We also found that women had more severe functional limitation and diabetes, but are less likely to have HF of ischaemic aetiology. Further, the influence of age on survival was similar in men and women (P for gender × age interaction = 0.63), suggesting that better survival in women is associated with factors other than age. While women have a higher prevalence of HF with preserved EF which was associated with a better prognosis in this study, we observed a higher risk of death in men, irrespective of whether they had HF with reduced or preserved EF (Figure 2).

There are a number of alternative potential explanations for the better outcomes in women with HF. The female heart appears to respond to injury differently from the male heart. For example, women have been reported to have less ventricular remodelling, preservation of right ventricular function, and protection against ventricular arrhythmias, neurohormonal activation, genetic mutations, myocyte necrosis, and apoptosis. Some of these advantages could be related to pregnancy and to sex-specific differences in gene expression.

In accordance with previous studies, we found lower prescription of ACE inhibitors or ARBs in women than in men. Perhaps surprisingly, this was particularly evident in patients with reduced EF, where the evidence for these therapies is strongest. In fact, for all age groups with reduced EF, women received ACE inhibitors or ARBs less frequently than men (data not shown). Given this pattern of prescribing, the lower risk of death for women compared with men is all the more remarkable.

The reported prevalence of diabetes in patients with HF is highly variable, with figures between 13% and 29%, probably due to the definitions of both diabetes and HF used and the heterogeneous nature of the populations studied. Our data are consistent with previous reports of higher risk of death among patients with HF with co-existing diabetes. The current analysis suggests that while crude unadjusted mortality rates in men and women with HF have presented conflicting results, with some suggesting better survival for women and others failing to identify such an association. Many of these studies have been limited by relatively small numbers of patients and have presented mortality risks for men and women with wide and overlapping confidence intervals, preventing definitive conclusions from being drawn. Moreover, consideration of specific interactions of sex with aetiology of HF or with reduced/preserved EF has been limited. Our study, using a large individual patient data set, is appropriately powered to ascertain the prognostic significance of sex in patients with HF.

The current analysis suggests that while crude unadjusted mortality rates in men and women were very similar, when adjusted for age the risk of death was higher in men than in women with HF. Further, the influence of age on survival was similar in men and women (P for gender × age interaction = 0.63), suggesting that better survival in women is associated with factors other than age. While women have a higher prevalence of HF with preserved EF which was associated with a better prognosis in this study, we observed a higher risk of death in men, irrespective of whether they had HF with reduced or preserved EF (Figure 2).

Conclusion

This analysis from a large, individual patient data meta-analysis has demonstrated that women with HF have lower risk of death when compared with men with HF, in both preserved and reduced EF. This survival benefit may be more marked in HF of non-ischaemic aetiology.
aetiology but is clearly attenuated by concomitant diabetes. Further study is required to determine the biological reasons for this better prognosis in women.

Conflict of interest: none declared.

Funding
The New Zealand National Heart Foundation, the University of Auckland, and the University of Glasgow [project grants].

Appendix


References


8. Martínez-Selles M, Domínguez M, Martínez F, García Fernández MA, García E. Women with left ventricular ejection fraction ≤20% have better prognosis than men. Int J Cardiol 2007;120:276–278.


27. Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. *Eur Heart J* 2011; in press.


